Blaise Pascal (1623-1662) – Phần 2: Đóng góp cho triết học toán học

182

Đóng góp của Pascal cho triết học toán học chủ yếu nằm trong tác phẩm “Về tinh thần hình học và Nghệ thuật thuyết phục” (De l’Esprit géométrique et de l’Art de persuader), được viết vào khoảng năm 1658, bao gồm hai phần:

Phần I: “Về Tinh thần Hình học” (De l’Esprit Géométrique)

Phần II: “Về Nghệ thuật thuyết phục” (De l’Art de persuader).

Trong đó Pascal chỉ ra rằng dù toán học chặt chẽ đến mấy, nhưng xét đến cùng nó vẫn phải dựa trên những mệnh đề đầu tiên không thể chứng minh, được gọi là các tiên đề (axioms).

Chú ý rằng vào thời của Pascal thì chỉ có một thứ hình học, đó là Hình học Euclid. Toàn bộ toán học cho đến lúc đó cũng chỉ có một lý thuyết duy nhất được xây dựng trên nền tảng tiên đề, đó là Hình học Euclid. Vì thế, khi Pascal thảo luận vấn đề nền tảng của toán học, điều hiển nhiên là ông bản đến nền tảng của Hình học Euclid. Cuối thế kỷ 19, khi David Hilbert muốn xây dựng một mô hình toán học mẫu mực theo phương pháp tiên đề, ông cũng lấy Hình học Euclid làm một tấm gương điển hình. Cụ thể, năm 1899 ông cho ra mắt cuốn “Grundlagen der Geometrie” (Cơ sở Hình học), trong đó ông nêu lên một hệ tiên đề gồm 20 tiên đề. .

Thậm chí cho đến hôm nay, khi thảo luận về triết học toán học, hoặc về nền tảng của toán học, Hình học Euclid vẫn đóng vai trò trung tâm. Chẳng hạn, trong bài báo trên tạp chí SCIENCE ngày 06/12/2002 nhan đề “Separating Truths From Provability” (Phân biệt chân lý với khả năng chứng minh)[4], Keith Devlin, Giáo sư toán học tại Đại học Stanford ở Mỹ, vẫn dùng Hình học Euclid để giải thích và nhấn mạnh vai trò của hệ tiên đề trong các lý thuyết toán học. Vì thế, Hình học Euclid, dù đã trở thành một môn học của học sinh phổ thông, nhưng nó vẫn có một chỗ đứng xứng đáng trong tư duy triết học toán học. Nhấn mạnh điều này để thấy rõ con mắt tinh tường của Blaise Pascal, khi ông là người đầu tiên nhận thấy sự cần thiết phải đặt dấu hỏi về nền tảng của toán học thông qua Hình học Euclid. Vấn đề ông đặt ra là :

Hệ tiên đề của Hình học Euclid có đủ chắc chắn và đáng tin cậy không?

Đó là một cảnh báo sớm đối với niềm tin tuyệt đối vào tư duy lý trí. Pascal không dừng lại ở cảnh báo đó, mà lập luận rằng toán học cuối cùng vẫn phải dựa trên một loại “đức tin” – niềm tin vào các tiên đề đã được lựa chọn. Nếu bạn muốn chứng minh các tiên đề đã lựa chọn, chắc chắn bạn lại phải dựa vào những tiên đề mới, cũng do trực giác chọn ra. Cứ như thế bạn có thể mở rộng hệ tiên đề của mình mãi mãi không có điểm dừng. Rốt cuộc, không có cách nào để chứng minh hệ tiên đề đã được lựa chọn là hoàn toàn chắc chắn, ngoài niềm tin dựa trên TRỰC GIÁC.

Một khi đã thấy vai trò quyết định của trực giác trong việc định hướng khám phá, chúng ta không thể không dừng lại vài phút để tán thưởng trực giác thiên tài của Euclid.

Trực giác ấy đã giúp ông xây dựng nên hệ tiên đề của Hình học Euclid − môn hình học mà Albert Einstein gọi là “cuốn sách nhỏ về hình học thiêng liêng” (the Holy Geometry Booklet), và là mẫu mực để Isaac Newton xây dựng tác phẩm “Những Nguyên lý Toán học của Triết học Tự nhiên” (Philosophiæ Naturalis Principia Mathematica). Lập luận của Hình học Euclid thuyết phục đến nỗi không chỉ các nhà toán học say mê nó, mà bất cứ ai yêu cái đẹp và tính trong sáng trong lập luận đều coi nó là sách gối đầu giường. Abraham Lincoln luôn mang theo mình cuốn Hình học Euclid trong sự nghiệp luật sư và chính trị, vì nó giúp ông tranh biện sắc sảo, thuyết phục,…

Nhưng David Hilbert, nhà toán học lỗi lạc cuối thế kỷ 19 đầu thế kỷ 20, chê hệ tiên đề của Euclid không đầy đủ. Ông kêu gọi cộng đồng toán học hợp sức lại để tái thiết toà lâu đài toán học theo phương pháp tiên đề. Để làm gương, đích thân Hilbert lao vào xây dựng một hệ tiên đề đầy đủ cho Hình học Euclid, sau này được gọi là Hệ tiên đề Hilbert. Hệ tiên đề này từng được quảng cáo rùm beng như một hệ tiên đề mẫu mực của phương pháp tiên đề. Bất chấp Định lý Gödel, trào lưu “Toán học mới” (New Maths) ở Tây phương những năm 1950-1960, đã “hạ bệ Euclid”[5] trong các trường phổ thông và thay thế bằng Hệ tiên đề Hilbert, gây nên những đảo lộn và hỗn loạn chưa từng có trong các nền giáo dục. Ngày nay, dưới ánh sáng của Định lý Gödel, người ta đã nhận ra rằng Hệ tiên đề Hilbert cũng không hoàn hảo[6], chẳng mấy ai còn nhắc đến Hệ tiên đề Hilbert, người ta chỉ nhắc đến Hệ tiên đề của Euclid.

Trực giác thiên tài của Euclid cũng đặc biệt lộ rõ ở Tiên đề 5, tức Tiên đề đường song song. Lịch sử Tiên đề 5 là một trong những câu chuyện kỳ lạ và hấp dẫn nhất của toán học, một trong những chương hay nhất của triết học nhận thức, được tóm tắt như sau :

Trong suốt chiều dài lịch sử kể từ khi Euclid công bố bộ Cơ Sở Hình học cho đến thế kỷ 19, nhiều nhà toán học ngờ vực Tiên đề 5 không phải là một tiên đề, vì thế họ ra sức chứng minh tiên đề này. Nhưng sau hơn 2000 năm thất bại, các nhà toán học thừa nhận Euclid là một thiên tài, rằng Tiên đề 5 là một tiên đề nền tảng của Hình học Euclid. Về logic, nếu Tiên đề 5 không thể chứng minh hoặc phủ nhận thì một tiên đề phản lại Tiên đề 5 cũng không thể chứng minh hoặc phủ nhận. Vậy nếu thay thế Tiên đề 5 trong Hệ tiên đề của Euclid bằng một tiên đề phản tiên đề 5, ta sẽ có một hệ tiên đề mới, từ đó xây dựng nên một thứ hình học mới phản lại Hình học Euclid, được gọi là Hình học Phi-Euclid (Non-Euclidean Geometry). Đó là một thành tựu vĩ đại của toán học thế kỷ 19, với công lao chủ yếu thuộc về Lobachevsky, Janos Bolyai và Karl Gauss. Hình học này được Bernhard Riemann tổng quát hóa thành một thứ hình học tổng quát cho các loại không gian, và Albert Einstein đã lấy Hình học Riemann làm cơ sở hình học cho Thuyết Tương đối tổng quát của ông.

Vậy là xuất phát từ Tiên đề 5, con đường logic đã dẫn tới Thuyết tương đối tổng quát. Nói cách khác, trực giác thiên tài của Euclid đã thiết lập nên Tiên đề 5, để sau đó khoảng 23 thế kỷ, tiên đề này dẫn tới một trong những khám phá vĩ đại nhất của loài người ─ Thuyết Tương đối tổng quát !

Câu chuyện về Hình học Phi-Euclid chứng tỏ sức mạnh vĩ đại của tư duy duy lý, đến nỗi nhiều người cho rằng sức mạnh đó là vô hạn. Nhưng Pascal nói với chúng ta rằng đó là một ý nghĩ sai lầm. Dẫu thế nào thì mọi hệ quả duy lý vẫn phải dựa trên một hệ tiên đề, và hệ tiên đề này phải dựa trên niềm tin.

Thật vậy, trong tác phẩm “Về tinh thần hình học và Nghệ thuật thuyết phục”, Pascal xem xét bản chất của quá trình khám phá chân lý bằng con đường lý trí. Ông chỉ ra rằng một trong những phương pháp chủ yếu của tư duy khoa học là phương pháp suy diễn (deduction) – phương pháp thiết lập những định lý dựa trên những chân lý đã được thiết lập từ trước. Ngay lập tức, Pascal lập luận rằng những chân lý đã được thiết lập từ trước ấy lại đòi hỏi những chân lý từ trước nữa làm chỗ dựa cho nó. Chuỗi đòi hỏi ấy cứ thế kéo dài vô tận, và do đó lý trí suy diễn sẽ không bao giờ đạt tới những chân lý đầu tiên!

Nói cách khác, lý trí suy diễn không bao giờ giải thích được nguyên nhân đầu tiên!

Pascal nhấn mạnh rằng, bằng phương pháp suy diễn rất hoàn hảo của nó, hình học có thể phát triển đến bất kỳ mức độ nào nó muốn và nó có thể, dựa trên một số nguyên lý ban đầu được thừa nhận như những tiên đề, nhưng không có cách nào để biết những tiên đề này là hoàn toàn chắc chắn.

Sau đó ông lưu ý:  “Tất cả những chân lý này không thể chứng minh được; ấy thế mà chúng lại là nền tảng và nguyên lý của Hình học[7].

Hơn thế nữa, Pascal nhấn mạnh rằng đó không phải là lỗi của hình học, mà là một bản chất tất yếu của nhận thức lý trí suy diễn. Ông nói:

…nếu khoa học này không xác định và chứng minh được mọi thứ thì lý do đơn giản là vì nó không thể[8].

Đó chính là tư tưởng cơ bản của Định lý Bất toàn ! Thật vậy, Định lý Bất toàn nói rằng toán học không thể chứng minh được mọi thứ trong toán học. Pascal chỉ khác Gödel ở chỗ ông đi đến kết luận này bằng triết học, còn Gödel đi đến bằng toán học. Nhưng dẫu thế nào thì cũng phải thừa nhận rằng chính Pascal đã là người đầu tiên tuyên bố toán học không thể chứng minh được mọi thứ!

Nói cách khác, Pascal đã đi trước thời đại của ông 300 năm!

(Còn tiếp)

Nguồn: Viethungpham.com

Bài vở cộng tác hoặc góp ý xin gửi về tintuc@hoithanh.com

Blaise Pascal (1623-1662) – Phần 1: Quan điểm triết học duy tâm

Blaise Pascal (1623-1662) – Phần 3 và hết: Nhờ cậy Chúa để khám phá chân lý

Bình Luận: